Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Heliyon ; 8(8): e10246, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2086249

ABSTRACT

Background and aims: The pathophysiology of SARS-CoV-2-associated diarrhea is unknown. Using an experimental model validated for rotavirus-induced diarrhea, we investigated the effects of SARS-CoV-2 on transepithelial ion fluxes and epithelial integrity of human intestinal cells. The effect of the antidiarrheal agent diosmectite on secretion was also evaluated following its inclusion in COVID-19 management protocols. Methods: We evaluated electrical parameters (intensity of short-circuit current [Isc] and transepithelial electrical resistance [TEER]) in polarized Caco-2 cells and in colonic specimens mounted in Ussing chambers after exposure to heat-inactivated (hi) SARS-CoV-2 and spike protein. Spectrofluorometry was used to measure reactive oxygen species (ROS), a marker of oxidative stress. Experiments were repeated after pretreatment with diosmectite, an antidiarrheal drug used in COVID-19 patients. Results: hiSARS-CoV-2 induced an increase in Isc when added to the mucosal (but not serosal) side of Caco-2 cells. The effect was inhibited in the absence of chloride and calcium and by the mucosal addition of the Ca2+-activated Cl- channel inhibitor A01, suggesting calcium-dependent chloride secretion. Spike protein had a lower, but similar, effect on Isc. The findings were consistent when repeated in human colonic mucosa specimens. Neither hiSARS-CoV-2 nor spike protein affected TEER, indicating epithelial integrity; both increased ROS production. Pretreatment with diosmectite inhibited the secretory effect and significantly reduced ROS of both hiSARS-CoV-2 and spike protein. Conclusions: SARS-CoV-2 induces calcium-dependent chloride secretion and oxidative stress without damaging intestinal epithelial structure. The effects are largely induced by the spike protein and are significantly reduced by diosmectite. SARS-CoV-2 should be added to the list of human enteric pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL